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Abstract 
It is now common to talk about “guardrails” as ways of controlling the risks associated 
with AI models, especially general-purpose AI (GPAI). This paper argues that this 
metaphor is misleading (over-simplistic) and that a more refined view of risk controls is 
needed, drawing on insights from safety engineering. This leads to the notions of a 
hierarchy of controls and layers of protection which can inform definition of a risk 
management strategy for a given AI application. The paper illustrates how concepts of 
layers of protection and hierarchies of controls, including precedence orders for 
controls, can be adapted from traditional safety engineering and used to guide the 
definition of risk management strategies for GPAI. 

 
Introduction 
When people refer to risks from artificial intelligence (AI), especially general-purpose AI 
(GPAI), they frequently also talk about introducing “guardrails”. This is a compelling 
metaphor – it immediately conjures up images of steel or other strong materials to 
keep us on a safe path. But it is just a metaphor and, unfortunately, rather a misleading 
one. This position paper briefly explores the concept of guardrails, identifies some 
relevant concepts from safety engineering, e.g. layers of protection and hierarchies of 
risk controls, and outlines an approach to identify appropriate risk control strategies for 
a given problem.  

 
The Guardrails Concept  
Discussions of AI guardrails often include technical, policy and legal aspects. Our focus 
here is on the technical aspects1 and the challenges that arise in developing effective 
guardrails.  
 
First, the space of AI models is vast and very high-dimensional (perhaps billions of 
parameters). In 3D space physical guardrails plus the way we use them, e.g. holding on 
to them in crossing a bridge or descending stairs, guide us through a subset of the 
space. It is obvious from inspection how the guardrails work2 – and that schemes such 
as those produced by M C Escher (see Fig. 1) wouldn’t work. We have no way of 
visualising such “structures” in high-dimensional spaces and, even if we could, we 
would not be able to judge whether the guardrails have been placed effectively to 
keep the model behaviour “safe” (or the protections are illusory as in the Escher 
drawing) as there is no effective way of measuring or predicting their strength.  For 
example, some of the common forms of guardrails are filters on the input and output, 
e.g. to remove offensive terms, or to prevent the model from providing advice on how 
to make a Molotov cocktail. However, it is often easy to bypass such filters – the term 
“jailbreaking” is typically used – so that harmful content is still produced.  

 
1 As they can give practical controls, rather than merely exhortations (policy) or redress (legal). 
2 Also, engineering analysis or standards mean that their strength can be assessed to show that they are good enough to offer the 
desired protection.  
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Second, the structure of the AI model is unknown and perhaps unknowable. The term 
“jagged frontier” [1] is used to mean a “boundary” in the model space which shows the 
limits of its capabilities. The idea has been used to distinguish those things that an AI 
model can do and those it can’t – by comparison with a human notion of equally 
difficult tasks, see Figure 2 (taken from [1]). In our case, we are interested in the 
boundary of what the AI can do safely. If we use an AI model to do a task which 
happens to lie within the frontier and the AI model does it well, and safely, we may 
then use the model to do another task which is outside its capability, as we think it 
should do equally well on such a task but the results are inadequate (a degraded 
capability) or are even unsafe. Figure 2 again rather reinforces the metaphor – a simple 
2D-rendering of the frontier which is smooth rather than jagged – but the challenge 
that the paper sets out is that we don’t know where the frontier is, and therefore where 
to place guardrails to stop the model being employed on tasks it can’t do safely. The 
challenge is also underscored by the ability to find single-pixel attacks on vision 
models that lead to misclassification [2]; this shows that the frontiers really are jagged 
in an important subclass of AI applications.  
 

  

Figure 1: “Relativity”, M C Escher Figure 2: The Jagged Frontier [1] 

 
Third, and perhaps most importantly, we must use guardrails properly – hold on to 
them, don’t leap over them, etc. They do not keep us safe “despite ourselves”. The 
metaphor of AI guardrails is often employed as if they will keep us safe regardless, but 
they can’t, and jailbreaking of models is analogous to leaping over the guardrails. The 
idea of guardrails also rather implies a “one-size-fits-all” model of how to achieve safety. 
But it is both more subtle and complex than that.  
 

Learning from Safety Engineering 
Safety engineering includes analyses to identify failure modes of systems and their 
components and introduces controls to address the attendant risks. In defining 
controls, it is common to introduce layers of protection recognising that no one single 
control is likely to be completely effective. Further, there is a notion of a hierarchy of 
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controls where those higher in the hierarchy are stronger and therefore preferable to 
those lower in the hierarchy. Using these concepts assists in defining safety 
architectures. In applying these concepts to AI models, it is helpful to distinguish 
between intrinsic and extrinsic properties of the AI models for example, weights in 
neural networks vs the performance of the network on some input data and this 
guides where to put risk controls, as illustrated in Figure 3. Further, it is important to 
understand when risk controls can be developed based on extrinsic properties or 
visible behaviour of the AI model.  
 

 

Figure 3: Intrinsic vs Extrinsic Risk Controls 

We first give an example of an extrinsic risk control. Consider an unmanned aerial 
vehicle (UAV) with fixed wings, like a conventional aircraft, using AI for path planning 
and for flight control, e.g. operating the control surfaces using large language models 
(LLMs)3. Here, risk controls can be based on extrinsic properties. For example, stall 
depends on a combination of the speed of the UAV and the angle of attack, both of 
which can be measured and risk controlled by limiting commands to the actuators for 
the control surfaces. It would make sense to work in terms of a stall margin keeping 
the UAV flight parameters some way away from stall to allow for measurement 
uncertainty, local air turbulence, etc. More simply, perhaps, risk controls can be 
implemented on the planned flight paths, e.g. keeping the UAV out of exclusion zones 
(again with a margin to allow for inevitable uncertainties).  
 
As well as identifying risk controls, safety engineering is concerned with assuring the 
system so it can be trusted. In this example the trust (and safety certification) can be 
focused on the risk controls not on the core control functions4 and this can be done 
using a conventional certification process (also see the hierarchy of controls below). 
From a performance perspective we want some confidence in the flight control or 
path planning algorithms, as we would not want the safeguards to be routinely 
triggered (otherwise there is no benefit from the use of AI), but this is an 
operational/commercial consideration not a safety one.  
 
In contrast, there are circumstances where the risk controls must be implemented 
using internal data and can be thought of as necessarily intrinsic. This occurs when 

 
3 For example, see: https://www.goodai.com/llm-agent-taught-to-control-drones/ 
4 This philosophy is being adopted by some companies, e.g. SAIF Systems, see: https://saifsystems.ai.  
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there are no (immediate) external measurements that can be made to inform or direct 
risk control. An example of this would be recommending treatment for sepsis where 
the clinical impact of inappropriate recommendations might be serious but by the 
time they can be detected harm will have been done (of course, extreme erroneous 
doses, e.g. more than the patient’s body weight, can be detected extrinsically). In this 
case, the risk controls must be in the AI model itself, e.g. shaped by an understanding 
of the relationship between patient characteristics and appropriate dosages of 
vasopressor (one of the drugs used to treat sepsis). This has been illustrated, taking a 
published model developed using reinforcement learning then showing its limitations 
(e.g. an unsafe rate of change of medication) and improving it through adaptations to 
the feature space and to the cost function [3]. Given the high criticality of the clinical 
scenario, the model needs to be adapted to include internal risk controls, even when 
there are external checks on the model outputs. From an assurance perspective, it is 
necessary to focus on the AI model itself, but there are emerging approaches for 
developing trust in the AI models, e.g. AMLAS5. But assurance is difficult with GPAI, e.g. 
LLMs, and the focus is necessarily more on extrinsic approaches.  
 
For example, it is becoming increasingly popular to use retrieval augmented 
generation (RAG) approaches to focus LLMs on a particular company’s data to get 
specific and relevant responses rather than generic ones reflecting the large quantities 
of data used to train the LLMs in the first place. However, as LLMs are prone to 
hallucination, or confabulation, the use of RAG methods also can be viewed as 
providing some form of risk control. In the authors’ experience confabulation can arise 
from drawing on a general case in a specific situation to which it doesn’t apply, i.e. 
giving the typical or modal answer in an atypical situation. This type of “extrinsic 
hallucination” is often easy to detect, as it will employ data that are clearly not relevant 
to the situation. Thus, the use of RAG frameworks for risk control can be thought of as 
something of a hybrid, but also a partial, approach. Hybrid, as using the local data on 
which the LLM is focused (extrinsic) helps to align the internal state of the AI model 
(intrinsic) with its operating context and makes erroneous outputs less likely. It is 
partial, as using RAG methods narrows the information used in making predictions to 
the relevant context but doesn’t ensure that the outputs correctly reflect this context, 
i.e. that inferences are sound. For example, we have encountered cases of what we 
term “intrinsic hallucination” where the output is based on the local data and is 
perfectly plausible – but not correct [4] – and the checks in current RAG frameworks 
are insufficient to detect such cases.  
 
Developers of GPAI, e.g. OpenAI, give guidance on ways of developing guardrails, e.g. 
on input filters (to detect potentially harmful prompts), and on outputs to detect and 
block inappropriate results, e.g. offensive language6. The approach proposed uses the 
same underlying GPAI model to “guard” the primary AI model – from a safety and 

 
5 Assurance of Machine Learning for use in Autonomous Systems, see: https://www.assuringautonomy.com/amlas  
6  https://cookbook.openai.com/examples/developing_hallucination_guardrails#2-constructing-our-hallucination-guardrail 
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assurance perspective there is a clear risk of a common mode failure, i.e. the primary 
model and the guardrail failing the same way (at the same time and/or on the same 
input data). Identifying and avoiding potential common mode failures is a well-
established safety engineering principle.  
 

Hierarchies of Risk Controls 
In safety engineering it is common to identify a hierarchy of controls with the first 
choice being engineered mitigations that prevent hazards, and human-based 
mitigation of hazard consequences usually being a last resort. Here we sketch, as a 
tentative proposal, a hierarchy of risk controls for AI. This hierarchy would be used in 
choosing individual risk controls and in defining layers of protection for a particular AI-
based system. The hierarchy and some illustrative examples of each are set out below: 

1. The application allows an extrinsic, engineered control that can be assured using 
conventional means in the application domain, i.e. conformance with the 
standards. 

a. The above-mentioned UAV where directly programmed controls can be 
used for stall protection and preventing excursions into forbidden airspace. 

b. An on-line clinical triage chatbot which can use a lookup table to detect 
trigger words, e.g. “suicide”, “self-harm” to stop the dialogue and connect 
the user to a human for immediate support.  

2. The application allows an extrinsic, engineered control that uses AI, but which 
can be assured using emerging approaches such as AMLAS.  

a. A sliding-mode controller for a vehicle clutch is tuned and optimised using 
a radial basis function neural network (RBFNN) [5]; in this case safety and 
performance are aligned, hence control system optimisation is a guarantor 
of safety, and the RBFNN is simple (having few parameters), hence 
facilitating assurance.  

3. The application allows an extrinsic, human-based, control where there is 
sufficient time for the human to make informed decisions and to exercise 
control7. 

a. Many clinical diagnosis systems, e.g. used in pathology, use the AI system 
with the aim of reducing workload on pathologists, for example using AI + 
one pathologist, rather than having two pathologists read each image [6]; 
this gives performance/workload benefits but also retains the clinician in 
the role of decision-maker, with the intent that they can compensate for 
limitations in the AI models.  

4. The application and AI development methods allow an intrinsic control, where 
the adaptations of the model can be justified using an appropriate analysis 
(safety, security, etc.) and the resulting model can be assured using an approach 
such as AMLAS. 

 
7 See: https://assuringautonomy.medium.com/human-control-of-ai-and-autonomy-the-art-of-the-possible-66779846e1d8 for a 
more extensive discussion of the circumstances under which human control is feasible, and the different types of control that can 
be exercised.  



 

york.ac.uk/assuring-autonomy 

7 

a. Using safety analyses to inform the refinement of the feature space and 
loss function for a system recommending vasopressors for treatment of 
sepsis (as outlined above) [3]. 

5. Neither intrinsic nor extrinsic controls are possible, perhaps due to the choice of 
the AI model, such as LLMs, and a hybrid approach is the best option for 
reducing risk. 

a. Use of RAG-based approaches for generating safety analyses but iterating 
in the production of the analyses to allow an expert human to guide the AI 
model, e.g. by refining prompts, to produce a credible result [4].  

 
Some observations are in order. First, options 1 and 2 are forms of fault-tolerant 
architecture, a topic which is well-understood for conventional computer-based 
systems, but little studied for AI-based systems (the discussion at [7] is a rare foray into 
this topic). Second, other precepts from reliability and safety engineering need to be 
applied, e.g. to avoid common mode or single points of failure; again, these ideas need 
to be adapted for systems employing AI, e.g. considering whether training data sets 
could give rise to common mode failure. Third, with option 3, care is also needed to 
avoid the human becoming a “liability sink” [8] and there is benefit in designing 
systems to support (augment) humans not to supplant them, an approach which is 
sometimes referred to as human-centred8. Fourth, the ranking of options 3 and 4 is 
debatable given the challenges for humans operating in a monitoring role; in general, 
analysis of the strengths and weaknesses of the options is needed in the application 
context, and it may be that option 4 is preferable to 3 in some situations. Thus, 
developing such analyses would be needed in a refinement of this proposed method.  
 
Further, it should be noted that in two of the five examples (for cases 2 and 3) safety 
and performance are aligned, meaning that the overall system (purely technical in 
case 2, and socio-technical in case 3) are both efficient and can be assured for safety.  
Finally, there is a growing body of work on guardrails for LLMs and it is likely that a 
more refined approach to selecting guardrail models for LLM-based applications will 
emerge over time (as well as more guardrails). As a caveat, it should be noted that all 
these approaches reduce risk – they don’t eliminate it – and work is still needed on 
more effective ways of assessing risk for GPAI.  
 
As indicated above, we need to determine how to build AI-based systems with layers 
of protection to reduce risks to an acceptable level. This might involve, for example, an 
intrinsic AI-based control and an extrinsic human-based control. The hierarchy of 
controls informs the definition of layers – the stronger the mechanisms used the fewer 
layers are likely to be needed. But it’s a little more subtle than that. AI and humans 
have different failure modes – for example a clinician reading pathology images might 
miss some artefacts, e.g. a lesion, that the AI can detect reliably, and vice versa. Thus, 
the definition of the layers needs to be informed by knowledge of the failure modes of 

 
8 A group in Stanford has pioneered this approach, see: https://hai.stanford.edu, although the term is now in more widespread use.  
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the humans in the task context and of the technology (AI model) being used. The 
layers should then provide at least one “barrier” to each failure mode with significant 
(unsafe) consequences. Attention also needs to be given to avoid common mode 
failures. In conventional safety architectures there are methods of analysis and 
information on failure modes that can inform such design. Although there is work 
published on AI risks, e.g. by NIST including refinements for GPAI9, this tends to be 
quite generic and to realise effective layers of protection requires more specific failure 
mode analysis. At present, this idea remains aspirational except in some well 
understood contexts, e.g. in pathology. 

 
Conclusions  
Much has been written about the need for guardrails for AI, especially for advanced 
forms such as LLMs, which are perceived as presenting high levels of risk. We have 
argued that whilst this is a compelling metaphor it is quite misleading (over-simplistic) 
and that a more nuanced approach is needed to identify risk controls and layers of 
protection appropriate for a particular AI/ML model, in its context of use. Although the 
guardrails metaphor might mislead people to believing AI risks are simply controlled, 
the term has achieved wide enough acceptance that we don’t think it will easily be 
changed. Instead, we advocate messages for different communities: 

1. Safety Engineers – continue to promote classical approaches to safety 
engineering and fault-tolerant architectures but adapt them for AI and refer to 
them as guardrails when speaking to other communities to align with the 
accepted terminology. 

2. Policy Makers and Regulators – ask for guardrails for model deployments (the 
effectiveness of the controls can only be properly assessed in the context of use) 
including why the risk controls were chosen, e.g. what failure modes they 
address and how the layers of protection manage the overall risk. 

3. AI Developers and Deployers – recognise that solutions to AI “problems” are not 
only within the AI world (e.g. shaping loss functions or using LLMs to guard 
LLMs) but are to be found in other disciplines; develop more clarity on AI failure 
modes, seeking to move beyond the notions of “concrete problems in AI” to a 
more specific understanding of AI failure modes in their socio-technical  
context [9]. 

 
Perhaps most important is that these groups collaborate, with mutual respect.  
 
It is acknowledged that the proposed approach to AI safety needs further exploration 
and validation/refinement, but we believe it is potentially instructive and that the 
notions of a hierarchy of controls and layers of protection can give critical insight. 
Finally, our hierarchy suggests that the use of frontier models, e.g. LLMs, in critical 
applications would be difficult to justify without further work to strengthen guardrails 

 
9 https://nvlpubs.nist.gov/nistpubs/ai/NIST.AI.600-1.pdf 
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and an honest evaluation of how strong these guardrails are (what risk reduction they 
achieve), given the likely failure modes of the AI models and the impact of those failure 
modes in their context of use. In particular, this applies where LLMs are used to guard 
models produced by the same LLMs as it is hard to see how to avoid common mode 
failures making the guardrails illusory – and as useful as Escher’s handrails.   
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