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Abstract

It is now common to talk about “guardrails” as ways of controlling the risks associated
with Al models, especially general-purpose Al (GPAI). This paper argues that this
metaphor is misleading (over-simplistic) and that a more refined view of risk controls is
needed, drawing on insights from safety engineering. This leads to the notions of a
hierarchy of controls and layers of protection which can inform definition of a risk
Mmanagement strategy for a given Al application. The paper illustrates how concepts of
layers of protection and hierarchies of controls, including precedence orders for
controls, can be adapted from traditional safety engineering and used to guide the
definition of risk management strategies for GPAI.

Introduction

When people refer to risks from artificial intelligence (Al), especially general-purpose Al
(GPAI), they frequently also talk about introducing “guardrails”. This is a compelling
metaphor — it immediately conjures up images of steel or other strong materials to
keep us on a safe path. But it is just a metaphor and, unfortunately, rather a misleading
one. This position paper briefly explores the concept of guardrails, identifies some
relevant concepts from safety engineering, e.g. layers of protection and hierarchies of
risk controls, and outlines an approach to identify appropriate risk control strategies for
a given problem.

The Guardrails Concept

Discussions of Al guardrails often include technical, policy and legal aspects. Our focus
here is on the technical aspects' and the challenges that arise in developing effective
guardrails.

First, the space of Al models is vast and very high-dimensional (perhaps billions of
parameters). In 3D space physical guardrails plus the way we use them, e.g. holding on
to them in crossing a bridge or descending stairs, guide us through a subset of the
space. It is obvious from inspection how the guardrails work2 — and that schemes such
as those produced by M C Escher (see Fig. 1) wouldn't work. We have no way of
visualising such “structures” in high-dimensional spaces and, even if we could, we
would not be able to judge whether the guardrails have been placed effectively to
keep the model behaviour “safe” (or the protections are illusory as in the Escher
drawing) as there is no effective way of measuring or predicting their strength. For
example, some of the common forms of guardrails are filters on the input and output,
e.g. to remove offensive terms, or to prevent the model from providing advice on how
to make a Molotov cocktail. However, it is often easy to bypass such filters — the term
“Jjailbreaking” is typically used — so that harmful content is still produced.

' As they can give practical controls, rather than merely exhortations (policy) or redress (legal).
2 Also, engineering analysis or standards mean that their strength can be assessed to show that they are good enough to offer the
desired protection.
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Second, the structure of the Al model is unknown and perhaps unknowable. The term
“jagged frontier” [1] is used to mean a “boundary” in the model space which shows the
limits of its capabilities. The idea has been used to distinguish those things that an Al
model can do and those it can't — by comparison with a human notion of equally
difficult tasks, see Figure 2 (taken from [1]). In our case, we are interested in the
boundary of what the Al can do safely. If we use an Al model to do a task which
happens to lie within the frontier and the Al model does it well, and safely, we may
then use the model to do another task which is outside its capability, as we think it
should do equally well on such a task but the results are inadequate (a degraded
capability) or are even unsafe. Figure 2 again rather reinforces the metaphor —a simple
2D-rendering of the frontier which is smooth rather than jagged - but the challenge
that the paper sets out is that we don’t know where the frontier is, and therefore where
to place guardrails to stop the model being employed on tasks it can’t do safely. The
challenge is also underscored by the ability to find single-pixel attacks on vision
models that lead to misclassification [2]; this shows that the frontiers really are jagged
in an important subclass of Al applications.

Jagged Frontier of Al Capabilities

X
Task Inside the Froftier

fask Ottside the Frontier

—— Al Abilities
-~-- Equal Difficulty Tasks

Figure 1: “Relativity”, M C Escher Figure 2: The Jagged Frontier [1]

Third, and perhaps most importantly, we must use guardrails properly — hold on to
them, don't leap over them, etc. They do not keep us safe “despite ourselves”. The
metaphor of Al guardrails is often employed as if they will keep us safe regardless, but
they can't, and jailbreaking of models is analogous to leaping over the guardrails. The
idea of guardrails also rather implies a “one-size-fits-all” model of how to achieve safety.
But it is both more subtle and complex than that.

Learning from Safety Engineering

Safety engineering includes analyses to identify failure modes of systems and their
components and introduces controls to address the attendant risks. In defining
controls, it is commmon to introduce layers of protection recognising that no one single
control is likely to be completely effective. Further, there is a notion of a hierarchy of
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controls where those higher in the hierarchy are stronger and therefore preferable to
those lower in the hierarchy. Using these concepts assists in defining safety
architectures. In applying these concepts to Al models, it is helpful to distinguish
between intrinsic and extrinsic properties of the Al models for example, weights in
neural networks vs the performance of the network on some input data and this
guides where to put risk controls, as illustrated in Figure 3. Further, it is important to
understand when risk controls can be developed based on extrinsic properties or
visible behaviour of the Al model.

Al Model
Intrinsic
Risk Controls

Al-Based System
Extrinsic
Risk Controls

Figure 3: Intrinsic vs Extrinsic Risk Controls

We first give an example of an extrinsic risk control. Consider an unmanned aerial
vehicle (UAV) with fixed wings, like a conventional aircraft, using Al for path planning
and for flight control, e.g. operating the control surfaces using large language models
(LLMs)3. Here, risk controls can be based on extrinsic properties. For example, stall
depends on a combination of the speed of the UAV and the angle of attack, both of
which can be measured and risk controlled by limiting commmands to the actuators for
the control surfaces. It would make sense to work in terms of a stall margin keeping
the UAV flight parameters some way away from stall to allow for measurement
uncertainty, local air turbulence, etc. More simply, perhaps, risk controls can be
implemented on the planned flight paths, e.g. keeping the UAV out of exclusion zones
(again with a margin to allow for inevitable uncertainties).

As well as identifying risk controls, safety engineering is concerned with assuring the
system so it can be trusted. In this example the trust (and safety certification) can be
focused on the risk controls not on the core control functions4 and this can be done
using a conventional certification process (also see the hierarchy of controls below).
From a performance perspective we want some confidence in the flight control or
path planning algorithms, as we would not want the safeguards to be routinely
triggered (otherwise there is no benefit from the use of Al), but thisis an
operational/commercial consideration not a safety one.

In contrast, there are circumstances where the risk controls must be implemented
using internal data and can be thought of as necessarily intrinsic. This occurs when

3 For example, see: https://mwww.goodai.com/lim-agent-taught-to-control-drones/
4 This philosophy is being adopted by some companies, e.g. SAIF Systems, see: https:/saifsystems.ai.
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there are no (immediate) external measurements that can be made to inform or direct
risk control. An example of this would be recommending treatment for sepsis where
the clinical impact of inappropriate recommendations might be serious but by the
time they can be detected harm will have been done (of course, extreme erroneous
doses, e.9. more than the patient’s body weight, can be detected extrinsically). In this
case, the risk controls must be in the Al model itself, e.g. shaped by an understanding
of the relationship between patient characteristics and appropriate dosages of
vasopressor (one of the drugs used to treat sepsis). This has been illustrated, taking a
published model developed using reinforcement learning then showing its limitations
(e.g. an unsafe rate of change of medication) and improving it through adaptations to
the feature space and to the cost function [3]. Given the high criticality of the clinical
scenario, the model needs to be adapted to include internal risk controls, even when
there are external checks on the model outputs. From an assurance perspective, it is
necessary to focus on the Al model itself, but there are emerging approaches for
developing trust in the Al models, e.g. AMLASs. But assurance is difficult with GPAI, e.g.
LLMs, and the focus is necessarily more on extrinsic approaches.

For example, it is becoming increasingly popular to use retrieval augmented
generation (RAG) approaches to focus LLMs on a particular company’s data to get
specific and relevant responses rather than generic ones reflecting the large quantities
of data used to train the LLMs in the first place. However, as LLMs are prone to
hallucination, or confabulation, the use of RAG methods also can be viewed as
providing some form of risk control. In the authors’ experience confabulation can arise
from drawing on a general case in a specific situation to which it doesn't apply, i.e.
giving the typical or modal answer in an atypical situation. This type of “extrinsic
hallucination” is often easy to detect, as it will employ data that are clearly not relevant
to the situation. Thus, the use of RAG frameworks for risk control can be thought of as
something of a hybrid, but also a partial, approach. Hybrid, as using the local data on
which the LLM is focused (extrinsic) helps to align the internal state of the Al model
(intrinsic) with its operating context and makes erroneous outputs less likely. It is
partial, as using RAG methods narrows the information used in making predictions to
the relevant context but doesn’t ensure that the outputs correctly reflect this context,
i.e. that inferences are sound. For example, we have encountered cases of what we
term “intrinsic hallucination” where the output is based on the local data and is
perfectly plausible — but not correct [4] — and the checks in current RAG frameworks
are insufficient to detect such cases.

Developers of GPAI, e.g. OpenAl, give guidance on ways of developing guardrails, e.g.
on input filters (to detect potentially harmful prompts), and on outputs to detect and
block inappropriate results, e.g. offensive languages. The approach proposed uses the
same underlying GPAI model to “guard” the primary Al model — from a safety and

5 Assurance of Machine Learning for use in Autonomous Systems, see: https://www.assuringautonomy.com/amlas
6 https://cookbook.openai.com/examples/developing_hallucination_guardrails#2-constructing-our-hallucination-guardrail
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assurance perspective there is a clear risk of a common mode failure, i.e. the primary
model and the guardrail failing the same way (at the same time and/or on the same
input data). Identifying and avoiding potential commmon mode failures is a well-
established safety engineering principle.

Hierarchies of Risk Controls

In safety engineering it is common to identify a hierarchy of controls with the first
choice being engineered mitigations that prevent hazards, and human-based
mitigation of hazard consequences usually being a last resort. Here we sketch, as a
tentative proposal, a hierarchy of risk controls for Al. This hierarchy would be used in
choosing individual risk controls and in defining layers of protection for a particular Al-
based system. The hierarchy and some illustrative examples of each are set out below:

1. The application allows an extrinsic, engineered control that can be assured using
conventional means in the application domain, i.e. conformance with the
standards.

a. The above-mentioned UAV where directly programmed controls can be
used for stall protection and preventing excursions into forbidden airspace.

b. An on-line clinical triage chatbot which can use a lookup table to detect
trigger words, e.g. “suicide”, “self-harm” to stop the dialogue and connect
the user to a human for immediate support.

2. The application allows an extrinsic, engineered control that uses Al, but which
can be assured using emerging approaches such as AMLAS.

a. Asliding-mode controller for a vehicle clutch is tuned and optimised using
a radial basis function neural network (RBFNN) [5]; in this case safety and
performance are aligned, hence control system optimisation is a guarantor
of safety, and the RBFNN is simple (having few parameters), hence
facilitating assurance.

3. The application allows an extrinsic, human-based, control where there is
sufficient time for the human to make informed decisions and to exercise
control”.

a. Many clinical diagnosis systems, e.g. used in pathology, use the Al system
with the aim of reducing workload on pathologists, for example using Al +
one pathologist, rather than having two pathologists read each image [6];
this gives performance/workload benefits but also retains the clinician in
the role of decision-maker, with the intent that they can compensate for
limitations in the Al models.

4. The application and Al development methods allow an intrinsic control, where
the adaptations of the model can be justified using an appropriate analysis
(safety, security, etc.) and the resulting model can be assured using an approach
such as AMLAS.

7 See: https://assuringautonomy.medium.com/human-control-of-ai-and-autonomy-the-art-of-the-possible-66779846e1d8 for a

more extensive discussion of the circumstances under which human control is feasible, and the different types of control that can
be exercised.
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a. Using safety analyses to inform the refinement of the feature space and
loss function for a system recommending vasopressors for treatment of
sepsis (as outlined above) [3].

5. Neither intrinsic nor extrinsic controls are possible, perhaps due to the choice of
the Al model, such as LLMs, and a hybrid approach is the best option for
reducing risk.

a. Use of RAG-based approaches for generating safety analyses but iterating
in the production of the analyses to allow an expert human to guide the Al
model, e.g. by refining prompts, to produce a credible result [4].

Some observations are in order. First, options 1and 2 are forms of fault-tolerant
architecture, a topic which is well-understood for conventional computer-based
systems, but little studied for Al-based systems (the discussion at [7] is a rare foray into
this topic). Second, other precepts from reliability and safety engineering need to be
applied, e.g. to avoid common mode or single points of failure; again, these ideas need
to be adapted for systems employing Al, e.g. considering whether training data sets
could give rise to common mode failure. Third, with option 3, care is also needed to
avoid the human becoming a “liability sink” [8] and there is benefit in designing
systems to support (augment) humans not to supplant them, an approach which is
sometimes referred to as human-centreds. Fourth, the ranking of options 3 and 4 is
debatable given the challenges for humans operating in a monitoring role; in general,
analysis of the strengths and weaknesses of the options is needed in the application
context, and it may be that option 4 is preferable to 3 in some situations. Thus,
developing such analyses would be needed in a refinement of this proposed method.

Further, it should be noted that in two of the five examples (for cases 2 and 3) safety
and performance are aligned, meaning that the overall system (purely technical in
case 2, and socio-technical in case 3) are both efficient and can be assured for safety.
Finally, there is a growing body of work on guardrails for LLMs and it is likely that a
more refined approach to selecting guardrail models for LLM-based applications will
emerge over time (as well as more guardrails). As a caveat, it should be noted that all
these approaches reduce risk — they don't eliminate it — and work is still needed on
more effective ways of assessing risk for GPAI.

As indicated above, we need to determine how to build Al-based systems with layers
of protection to reduce risks to an acceptable level. This might involve, for example, an
intrinsic Al-based control and an extrinsic human-based control. The hierarchy of
controls informs the definition of layers — the stronger the mechanisms used the fewer
layers are likely to be needed. But it's a little more subtle than that. Al and humans
have different failure modes - for example a clinician reading pathology images might
miss some artefacts, e.g. a lesion, that the Al can detect reliably, and vice versa. Thus,
the definition of the layers needs to be informed by knowledge of the failure modes of

8 A group in Stanford has pioneered this approach, see: https:/hai.stanford.edu, although the term is now in more widespread use.
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the humans in the task context and of the technology (Al model) being used. The
layers should then provide at least one “barrier” to each failure mode with significant
(unsafe) consequences. Attention also needs to be given to avoid common mode
failures. In conventional safety architectures there are methods of analysis and
information on failure modes that can inform such design. Although there is work
published on Al risks, e.g. by NIST including refinements for GPAI¢, this tends to be
quite generic and to realise effective layers of protection requires more specific failure
mode analysis. At present, this idea remains aspirational except in some well
understood contexts, e.g. in pathology.

Conclusions

Much has been written about the need for guardrails for Al, especially for advanced
forms such as LLMs, which are perceived as presenting high levels of risk. We have
argued that whilst this is a compelling metaphor it is quite misleading (over-simplistic)
and that a more nuanced approach is needed to identify risk controls and layers of
protection appropriate for a particular Al/ML model, in its context of use. Although the
guardrails metaphor might mislead people to believing Al risks are simply controlled,
the term has achieved wide enough acceptance that we don't think it will easily be
changed. Instead, we advocate messages for different communities:

1. Safety Engineers — continue to promote classical approaches to safety
engineering and fault-tolerant architectures but adapt them for Al and refer to
them as guardrails when speaking to other commmunities to align with the
accepted terminology.

2. Policy Makers and Regulators — ask for guardrails for model deployments (the
effectiveness of the controls can only be properly assessed in the context of use)
including why the risk controls were chosen, e.g. what failure modes they
address and how the layers of protection manage the overall risk.

3. Al Developers and Deployers — recognise that solutions to Al “problems” are not
only within the Al world (e.g. shaping loss functions or using LLMs to guard
LLMSs) but are to be found in other disciplines; develop more clarity on Al failure
modes, seeking to move beyond the notions of “concrete problems in Al" to a
more specific understanding of Al failure modes in their socio-technical
context [9].

Perhaps most important is that these groups collaborate, with mutual respect.

It is acknowledged that the proposed approach to Al safety needs further exploration
and validation/refinement, but we believe it is potentially instructive and that the
notions of a hierarchy of controls and layers of protection can give critical insight.
Finally, our hierarchy suggests that the use of frontier models, e.g. LLMs, in critical
applications would be difficult to justify without further work to strengthen guardrails

° https://nvipubs.nist.gov/nistpubs/ai/NIST.Al.600-1.pdf
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and an honest evaluation of how strong these guardrails are (what risk reduction they
achieve), given the likely failure modes of the Al models and the impact of those failure
modes in their context of use. In particular, this applies where LLMs are used to guard
models produced by the same LLMs as it is hard to see how to avoid common mode
failures making the guardrails illusory — and as useful as Escher’s handrails.
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